
Compiling Python 
to WASM

Welcome to the world of WebAssembly



Hi 

Farhaan Bukhsh
Senior Software Engineer OpenCraft 
Open edX Core Contributor

@ f a r h a a n b u k h s h

Kumar Anirudha
Solutions Architect, Product Consultant

@ a n i s t a r k



WebAssembly

The rise of WebAssembly

WebAssembly (WASM) = Portable bytecode for the web


Designed for speed, safety, and sandboxing


Supported by all modern browsers


Native-like performance on the client


Opens doors for running non-JS languages on the web



Challenges of Running Python in WASM

python’s dynamic nature

Unlike Rust and Go, Python's dynamic typing and 
runtime features pose challenges for efficient 
WASM execution.



Performance overhead.



Limited support for certain Python features and 
libraries.



Exploring Current Solutions

Pyodide: Python for Browser

Pyodide brings the Python runtime to the browser 
by compiling CPython to WebAssembly



Live Demo

Pyodide Demo



Exploring Current Solutions

PyScript: Improve Python on Browser

PyScript is an open source platform for Python in the browser.



Exploring Current Solutions

RustPython: A Rust-based Python Interpreter

RustPython is a Python interpreter written in Rust, 
optimized for WASM.



A Better Way?

Python to WASM



Python TO WASM

Python Subsets



Python TO WASM

Py2Wasm

py2wasm is a compiler that transforms Python code into 
WebAssembly

It leverages Nuitka, a Python-to-C compiler, to convert 
Python code into C, which is then compiled into Wasm.




Live Demo

Py2Wasm Demo



Python TO WASM

Codon
A high-performance Python-like compiler using LLVM



Python TO WASM

SPy
SPy is a subset/variant of Python specifically designed to be 
statically compilable while retaining a lot of the "useful" 
dynamic parts of Python.

github.com/spylang/spy

.spy



Exploring Current Solutions

MicroPython
MicroPython is a lean and efficient implementation of the Python 3 programming language that 
includes a small subset of the Python standard library and is optimised to run on microcontrollers 
and in constrained environments.



Where It all Breaks

Current Limitations
Current Limitations Across All Projects



Dynamic Features: eval(), exec(), runtime code generation


Import System: Dynamic imports, importlib manipulation


Introspection: Deep runtime introspection capabilities


Standard Library: Many modules require system calls unavailable in WASM


C Extensions: Native extension modules don't work



WASM-Specific Challenges



Memory Management: Reference counting vs GC integration


Threading: WASM threading model limitations


I/O: WASI interface constraints


Binary Size: Balancing features vs deployment size


Startup Time: Cold start performance for edge deployment



INTRODUCING

waspy

A Python to WebAssembly compiler written in Rust.

github.com/anistark/waspy



How waspy works

waspy github.com/anistark/waspy



How waspy works

waspy github.com/anistark/waspy



How waspy works

waspy github.com/anistark/waspy

Final .wasm



How to use waspy

waspy
github.com/anistark/waspy



Live Demo

waspy Demo



Current STATE

waspy github.com/anistark/waspy



Python Project Support

waspy
github.com/anistark/waspy



Alternative approach

In early discussion
C-API Bridge


Extension/Module for CPython


JIT and AOT support



Thank you for your patience

Find us on 𝕏

@ f h a c kd ro i d@ k r a n i r u d h a


